Unsupervised Domain Adaptation for Image Classification Using Non-Euclidean Triplet Loss

نویسندگان

چکیده

In recent years, computer vision tasks have increasingly used deep learning techniques. some tasks, however, due to insufficient data, the model is not properly trained, leading a decrease in generalizability. When trained on dataset and tested another similar dataset, predicts near-random results. This paper presents an unsupervised multi-source domain adaptation that improves transfer increases proposed method, new module infers source of input data based its extracted features. By making features extractor compete against this objective, learned feature representation generalizes better across sources. As result, representations those from different sources are learned. That is, generic independent any particular domain. training stage, non-Euclidean triplet loss function also utilized. Similar for samples belonging same class can be more effectively using function. We demonstrate how developed framework may applied enhance accuracy outperform outcomes already effective methodologies. strategy performs particularly well when dealing with various domains or there data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Parameter Reference Loss for Unsupervised Domain Adaptation

The success of deep learning in computer vision is mainly attributed to an abundance of data. However, collecting large-scale data is not always possible, especially for the supervised labels. Unsupervised domain adaptation (UDA) aims to utilize labeled data from a source domain to learn a model that generalizes to a target domain of unlabeled data. A large amount of existing work uses Siamese ...

متن کامل

Unsupervised Non Stationary Image Segmentation Using Triplet Markov Chains

This work deals with the unsupervised Bayesian hidden Markov chain restoration extended to the non stationary case. Unsupervised restoration based on “ExpectationMaximization” (EM) or “Stochastic EM” (SEM) estimates considering the “Hidden Markov Chain” (HMC) model is quite efficient when the hidden chain is stationary. However, when the latter is not stationary, the unsupervised restoration re...

متن کامل

Unsupervised image segmentation using triplet Markov fields

Hidden Markov fields (HMF) models are widely applied to various problems arising in image processing. In these models, the hidden process of interest X is a Markov field and must be estimated from its observable noisy version Y. The success of HMF is mainly due to the fact that the conditional probability distribution of the hidden process with respect to the observed one remains Markovian, whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2022

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics12010099